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Abstract

The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent
animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to
what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across
the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted
systematic detection, non-detection sign surveys in 47, 17617 km grid cells. Within each cell, we surveyed 40, 1-km
transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that
tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of
occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest
centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with
understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly
preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest
block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper
slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with
adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian
forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in
fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial
information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in
habitat extent, quality, and connectivity.
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Introduction

Although tigers (Panthera tigris Linnaeus, 1758) globally inhabit a

variety of habitat types and are able to adapt to a wide range of

environmental conditions [1], in Sumatra they are generally

believed to live only in natural forest areas. Habitat loss has widely

been recognized as the main threat to Sumatran tigers [2]. Forest

conversion, therefore, has typically been equated to tiger

extermination. In Sumatra, natural forests have largely been

converted to forestry and agricultural plantations. Information

from local people and our preliminary surveys indicate, however,

that such plantation areas are not totally useless for tigers. With

recent and future changes in Sumatra landscapes and across the

tiger range involving continued conversion of forests into

plantations, it is crucial to understand whether existing plantation

areas are useable by tigers. Furthermore, for tiger restoration, it is

also important to understand how habitat conditions within forests

and plantations can be improved.

The use of habitats by Sumatran tigers within, and especially

outside of, natural forests has barely been studied. Previous studies

have largely focused on population estimation in intact forests

and/or within protected areas [3,4,5]. Only recently have some

investigators begun assessing the value of non-pristine forests as

tiger habitat [6]. Except for Maddox et al. [7], who investigated

tigers in a non-cultivated conservation area within an oilpalm

concession, there is no other study conducted in Sumatra

examining use of non-forest areas. This study is the first that

systematically investigates occupancy and habitat use by Sumatran

tigers in different landcover types within a multi-use landscape.

We focused on Riau Province in central Sumatra, which

historically was considered by Borner [8] as the stronghold for

Sumatran tiger conservation.

Distribution and habitat models
Knowledge of distribution and habitat requirements of animals

are key elements in ecology and basic prerequisites for effective

wildlife management [9,10]. It also is important to construct

reliable predictive models of animal occurrence based on solid

understanding of the relationships between animals and habitat.

Such models are urgently needed for wildlife management, but
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constructing them for rare, elusive, and highly mobile species such

as the Sumatran tiger is a demanding task. Due to data limitations,

the distribution of tigers is often broadly mapped based on

historical records in combination with general knowledge and

expert opinion regarding perceived potential habitats.

Understanding patterns of animal distribution requires consid-

eration of the scale appropriate to address wildlife conservation

needs [9,11,12] because habitat selection, one of the determining

factors in animal distribution, takes place at a variety of spatial and

temporal scales [13,14,15]. While broad-scale tiger distribution

maps such as the Tiger Conservation Unit [16] or the updated

version, Tiger Conservation Landscapes [17], have been useful to

direct conservation strategies at the global level, they are limited

when it comes to local or regional landscape-level management.

Therefore, distribution models should consider appropriate scale

(spatial and temporal), predictive ability, and include an assess-

ment of uncertainty.

In this study, we use an occupancy modeling approach

[18,19,20,21] that incorporates the probability of detection into

the estimation procedure, recognizing that it is not always 1.0 [22].

This provides a more accurate depiction of animal distribution

without the need to assume that all animals present in the surveyed

area are detected [21]. Application of such a technique has been

done for some groups of animals including tigers in Kerinci-Seblat

[23] and the large mammal community in India [24]. By

incorporating covariates into the models it is possible to describe

the geographic range and habitat characteristics of the species of

interest in the surveyed area [25,26], and also predict the pro-

bability of occurrence for other sites not surveyed.

Multi-scale analysis
Recognizing that multiple-scale processes affect tiger distribu-

tion [27], we developed models depicting tiger-habitat relation-

ships at multiple scales. In addition to estimating tiger occupancy

at the landscape-scale based on large-scale sampling blocks, we

also investigated use, selection, and habitat characteristics within

forest and plantations based on finer scale sampling.

The goals of this study were: 1) to investigate factors affecting

tiger probability of occupancy or habitat use, 2) to construct a

predictive, spatially-explicit species occurrence model for the forest

and plantation landscape in central Sumatra; and 3) to describe

habitat characteristics and evaluate the use and selection by tigers

between and within different landcover types. We hypothesized

that tiger occupancy or habitat use would increase as the pro-

portion of the forested area within the grid cell increases, as the

rate of deforestation declines, as altitude declines, as distance to

forest centroid and distance to protected area centroid decline, as

distance to public roads increases, and as precipitation increases.

We also predicted that detection probability would be higher in

forests compared to plantation areas.

Study Area
This study was conducted in central Sumatra, covering the

southern part of the Riau Province and small portions of Jambi

and West Sumatra provinces (Figure 1). The initial survey in this

mega-landscape found that Sumatran tigers were distributed in

low density, in major protected areas including Tesso Nilo

National Park, Bukit Tigapuluh National Park, Rimbang Baling

Wildlife Reserve, and Kerumutan Wildlife Reserve and in forests

outside of those protected areas [28,29]. Prior to this survey, tiger

presence in plantations such as acacia, oilpalm, and rubber were

limited to some anecdotal reports but were never systematically

documented.

The land cover in the study area is a mosaic of protected areas,

towns and other human settlements, plantations (mainly acacia

and oilpalm), mining, and secondary forests [30,31]. For detailed

Figure 1. Map of the study area in central Sumatra.
doi:10.1371/journal.pone.0030859.g001

Tiger Occupancy in Central Sumatra

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e30859



description of the study area refer to Sunarto (2011) [32]; while

detailed study of forest conversion in the area is presented by Uryu

et al. [31]. While a relatively large portion of hilly, higher elevation

forests are protected, it is not the case with lower elevation areas

that include peat-swamp and mineral-soil forests. Examples of

unprotected forests include those in Kampar Peninsula, the

eastern part of the Kerumutan landscape, the north-western part

of the Bukit Tigapuluh landscape, and some areas just outside of

Rimbang Baling Wildlife Reserve.

Results

Summary of effort
We systematically surveyed 1857 km of transects in 47

17617 km grid cells covering six different landcover types

(Table 1). Each grid cell was surveyed for 40, 1-km transects

except in two cells with 29 and 32 km of transects due to logistical

constraints. Tiger sign was detected in all but two landcover types:

mixed agriculture and coconut plantation.

Occupancy models
The best model of tiger-occupancy (y17617 km) included 2

variables: altitude (AltDEM) and distance-to-forest-centroid

(Table 2). Based on the b estimates, tiger probability-of-occupancy

(y17617 km) increased strongly with altitude, and decreased, but not

strongly with distance-to-forest-centroids (Table 3). Relative

estimates of b for every grid-level landscape covariate were

consistent in their direction (+/2) in univariate and best models

alike (Table 3).

Spatially explicit occupancy model. Using the best model

from the model set above, we then developed spatially-explicit

predictions of tiger occupancy across the landscape (Figure 2). This

prediction shows that sites with higher probability of occupancy

were concentrated in the western and southern parts of the study

Table 1. Summary of survey effort and detection of tigers in five landcover types in Riau Province, central Sumatra.

Forest Acacia Oilpalm Rubber
Mixed
Agriculture Coconut Combined

17617 km GRID LEVEL

Number of 17617 km grid cells surveyed 26 7 6 5 2 1 47

Grid cells with tigers detections 19 3 2 1 0 0 25

Probability of Site Occupancy (y17617 km): Naı̈ve estimate* 0.73 0.43 0.33 0.20 0.00 0.00 0.53

1-KM TRANSECT LEVEL

Number of 1 km transects surveyed 1029 268 240 200 80 40 1857

Transects with tiger detections 81 10 2 1 0 0 94

Probability of Site Use (y1-km): Naı̈ve estimate 0.08 0.04 0.01 0.01 0.00 0.00 0.05

*number of sites where the species was detected divided by total number of sites surveyed.
doi:10.1371/journal.pone.0030859.t001

Table 2. Top models depicting tiger probability-of-occupancy (y17617 km) at the landscape-scale with 17617 km grid-level
landscape covariates in Riau Province, central Sumatra.

Model AIC DAIC wi Model Likelihood K

psi(AltDEM+dtf05cr),thta0,thta1; p(LCFor) 318.2 0.0 0.30 1.00 7

psi(AltDEM+dtf05cr+For07Area), thta0, thta1; p(LCFor) 318.9 0.7 0.21 0.69 8

psi(AltDEM),thta0,thta1; p(LCFor) 319.4 1.2 0.16 0.54 6

psi(AltDEM+dtf05cr+For07Area+ dtpacr), thta0,thta1,p(LCFor) 320.7 2.5 0.09 0.28 9

psi(dtf05cr),thta0,thta1,p(LCFor) 321.8 3.6 0.05 0.16 6

psi,thta0,thta1,p(LCFor) 321.9 3.7 0.05 0.15 5

psi(For07Area),thta0,thta1,p(LCFor) 322.0 3.8 0.04 0.14 6

psi(dtpacr),thta0,thta1,p(LCFor) 322.6 4.4 0.03 0.11 6

psi(Def0607),thta0,thta1,p(LCFor) 323.4 5.2 0.02 0.07 6

psi(Precip),thta0,thta1,p(LCFor) 323.8 5.6 0.02 0.06 6

psi(Dtmprd),thta0,thta1,p(LCFor) 323.9 5.7 0.02 0.06 6

psi(.),p(LCFor) 325.6 7.4 0.01 0.02 3

psi,thta0,thta1,p(.) 338.4 20.2 0.00 0.00 4

Psi = probability of site occupancy/habitat use; p = probability of detection; thta0 = spatial dependence parameter representing the probability that the species is
present locally, given the species was not present in the previous spatial replicate; thta1 = spatial dependence parameter representing the probability that a species is
present locally, given it was present at the previous spatial replicate. AltDEM = Altitude; dtf05cr = Distance to nearest centroid of forest block greater than 50,000 ha;
LCFor = Code for forest (1) or non forest (0); For07Area = Area of forest in the grid based on 2007 data; dtpacr = distance to centroid of protected area;
Def0607 = Deforested area from 2006 to 2007 in each grid cell; Precip = Precipitation; Dtmprd = Distance to major public road.
doi:10.1371/journal.pone.0030859.t002
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area. The model generally has low confidence (large coefficient of

variation) in predicting tiger occupancy in peat swamp areas,

which are located in the upper right (NW) of the study area.

Models accounting for spatial autocorrelations in detection

histories within each site [33], always performed better than

original models.

Habitat use models
Across landcover types. The best model included LCCode

(corresponding to the distance to and dissimilarity from the forest).

This model performed better than those accounting for differences

between landcover types as simply categorical (0 or 1). Therefore,

we included LCCode as an additional covariate to model p or y.

Lumping landcover types together, we found that models

including only the LCCode were superior to other models

(Table 4a). Estimates of b from the best model for LCCode

indicate that probability of use (y1-km) by tigers strongly decreased

as the landcover types increasingly became dissimilar or distant

from forest (Table 5). Estimates of b from univariate models under

this analysis further indicated that probability of habitat use (y1-km)

increased as altitude, distance-to-freshwater, distance to forest

edge, and distance to major public roads increased, and that

probability of habitat use (y1-km) declined as precipitation and

distance to centroid of protected areas increased.

For the model set based on manual habitat covariates, the best

model included understory cover, landcover code (LCCode), fire

Table 3. Estimates of b for the logit link function for landscape covariates extracted using GIS based on best and univariate
models for tiger probability-of-occupancy (y17617 km).

MODEL Intercept AltDEM Dtf05cr For07Area Dtpacr Def0607 Precip Dtmprd

A priori relationship 2 2 + 2 2 + +

Best
(SE)

27.63
(3.938)

101.09
(48.941)*

20.31
(0.220)

NA NA NA NA NA

Univariate
(SE)

NA 76.72 (41.249) 20.23 (0.185) 0.18 (0.119) 20.27 (0.223) 20.37 (0.490) 0.09 (0.358) 20.11 (0.505)

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italics indicate opposite from a priori prediction.
AltDEM = Altitude; dtf05cr = Distance to nearest centroid of forest block greater than 50,000 ha; For07Area = Area of forest in the grid cell based on 2007 data;
Dtpacr = distance to centroid of protected area; Def0607 = Deforested area from 2006 to 2007 in each grid cell; Precip = Precipitation; Dtmprd = Distance to major public
road.
doi:10.1371/journal.pone.0030859.t003

Figure 2. Map of probability of tiger occupancy in the central Sumatra landscape. This map is constructed from the best occupancy model
developed based on the landscape-scale survey in 17617 km grid cells representing forest and other major landcover types.
doi:10.1371/journal.pone.0030859.g002

Tiger Occupancy in Central Sumatra

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e30859



risk, settlement, slope, and altitude (Table 4b). Based on the

parameter estimates for the logit link function, the impacts of

understory and altitude were positive and strong, while for

landcover code and settlement the impacts were negative and

strong (Table 6). Estimates of these covariate parameters,

especially in terms of the direction and value relative to the

standard error, were also consistent across models.

Though slightly different in the value, the ratio of probability-of-

use by tigers, relative to forest, consistently decreased with the

same rank from acacia, oilpalm, rubber, mixed-agriculture, and

coconut both when we model using landscape covariates

(Figure 3a) or manual habitat covariates (Figure 3b).

Within forest habitat selection. Based on the first set of

models developed using landscape covariates, we found that

distance-to-freshwater was the single most important variable

determining probability of habitat use by tigers within natural

forest areas (Table 7a). Tigers strongly selected sites that were

farther from water contrary to our a priori prediction (Table 8).

Furthermore, based on univariate models developed with the rest

of the landscape variables, we found that within the forest areas,

tigers tended to use areas with higher elevation, lower annual

rainfall, farther from forest edge, and closer to forest centroids.

Based on models developed using manual covariates, we

found four variables (understory cover, encroachment, settle-

ment, and slope) to be the most important factors determining

tiger probability of habitat use within forest areas (Table 7b). All

of those variables had strong effects on tiger probability of

habitat use (Table 9). Tigers strongly preferred forest with

denser understory cover and steeper slope, and they strongly

avoided forest areas with higher human influence in the forms of

encroachment and settlement. We found that accounting for

slope in modeling detection probability produced models that

performed better than the best a priori model (delta AIC = 5.23),

which accounted for slope in the probability-of-occupancy

instead of detection. Beta estimates (b[SE]) from this new

model for slope as a detection covariate was 12.25 (4.59)

meaning that the probability of detecting tigers strongly

increases with slope.

Table 4. Top models (wi.0) for tiger probability of habitat use (y1-km) in central Sumatra across all landcover types in the
landscape based on detection history data collected at transect sites (n = 1857, 1-km transects) in six landcover types.

Model AIC DAIC wi

Model
Likelihood K

a) Developed using landscape covariates

psi(LCCode),thta0,thta1,p(LCCode) 1476.97 0.00 0.69 1.00 6

psi(LCCode+altDEM+Precip),thta0,thta1, p(LCCode) 1480.02 3.05 0.15 0.21 8

psi(LCCode+altDEM+Precip+dtwater),thta0, thta1,p(LCCode) 1480.41 3.44 0.12 0.18 9

psi(LCCode+altDEM),thta0,thta1,p(LCCode) 1482.93 5.96 0.03 0.05 7

psi(altDEM),thta0,thta1,p(LCCode) 1499.1 22.13 0.00 0.00 6

b) Developed using manual covariates

psi(understory+LCCode+firerisk+Settlement+Slope+Altitude),thta0,thta1,p(LCCode) 1443.03 0.000 0.52 1.00 11

psi(understory+LCCode+firerisk+Settlement+Slope+Altitude+encroach),thta0,thta1,p(LCCode) 1444.96 1.930 0.20 0.38 12

psi(understory+LCCode+firerisk+Settlement), thta0, thta1,p(LCCode) 1446.16 3.130 0.11 0.21 9

psi(understory+LCCode+firerisk+Settlement+Slope+Altitude+encroach+logging),thta0,thta1,p(LCCode) 1446.62 3.590 0.09 0.17 13

psi(understory+LCCode+firerisk+Settlement+Slope), thta0,thta1,p(LCCode) 1447.00 3.970 0.07 0.14 10

psi(understory+LCCode+firerisk),thta0,thta1,p(LCCode) 1450.78 7.750 0.01 0.02 8

Note: Psi = probability of site occupancy/habitat use; p = probability of detection; thta0 = spatial dependence parameter - probability that the species is present locally,
given the species was not present in the previous site; thta1 = spatial dependence parameter -probability that a species is present locally, given it was present at the
previous site. LCCode = landcover code; AltDEM = Altitude; Precip = Precipitation; dtwater = distance to freshwater; Dtfedge07 = distance to forest edge;
dtf05cr = Distance to nearest centroid of forest block greater than 50,000 ha; dtpacr = distance to centroid of protected area; Dtmprd = Distance to major public road;
LCFor = forest(1) or nonforest(0).
doi:10.1371/journal.pone.0030859.t004

Table 5. Estimates of b for the logit link function based on best and univariate models for tiger probability of habitat use (y1-km) in
all landcover types in central Sumatra for landscape covariates.

MODEL Intercept LCCode AltDEM Precip Dtwater Dtfedge07 Dtpacr Dtmprd

A priori relationship NA 2 2 + 2 2 2 2

Best
(SE)

23.06 (0.226) 21.76 (0.304)* NA NA NA NA NA NA

Univariate
(SE)

NA 21.76
(0.304)*

0.17 (0.091) 20.19 (0.105) 0.18 (0.116) 0.14 (0.104) 20.13 (0.135) 0.01 (0.111)

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italics indicate opposite from a priori prediction.
LCCode = landcover code; AltDEM = Altitude; Precip = Precipitation; dtwater = distance to freshwater; Dtfedge07 = distance to forest edge; dtpacr = distance to centroid
of protected area; Dtmprd = Distance to major public road.
doi:10.1371/journal.pone.0030859.t005

Tiger Occupancy in Central Sumatra

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e30859



Within acacia plantation habitat selection. We found

distance-to-freshwater and distance-to-major-public-road as the

most important variables determining tiger probability of habitat

use within acacia plantations (Table 10a). In contrast to forest

areas however, within acacia plantations tigers tended to use areas

closer to water (Table 11).

Using manual covariates, we found four variables (slope, sub-

canopy cover, encroachment, and logging) to be the most

important factors determining habitat use by tigers (Table 10b).

Of these four variables only logging had a strong impact (Table 12)

with tigers avoiding areas with higher logging activity, and

avoiding steeper areas. In acacia plantations, tigers preferred areas

with thicker sub-canopy cover and with higher level/risk of

encroachment.

Based on covariates collected in plantation areas only, three

variables (plant age, human activity, and leaf litter) were found

to be the most important in determining tiger habitat use in

acacia plantations (Table 10c). Tigers preferred areas with older

plants and more leaf litter; and avoided areas with high human

activity. Estimates of b from univariate models show that tigers

strongly preferred areas with taller trees, and strongly avoided

areas with higher intensity of plantation management activity

(Table 13).

We descriptively summarized the few records of tiger

detections from oilpalm and rubber plantations as they provide

some rare evidence on the use of such areas by tigers. In oilpalm

plantations, tiger sign was detected only in two locations that

were measured respectively ,13 and ,7.5 km from the edge of

the nearest large (.50,000 ha) forest block. The only record of

tiger sign in the rubber plantations was documented in a site that

was ,16 km away from the edge of the nearest large forest

blocks.

Discussion

Considering the dynamic nature of tiger landscapes in Sumatra

and elsewhere, it is crucial to understand spatial patterns of tiger

occupancy and habitat use across the spectrum of habitat types.

This paper provides information important for current and future

management of tigers and other wide-ranging carnivores living in

landscapes that are increasingly dominated by humans, particu-

larly in South East Asia.

This paper is unique in that it describes how to use an

occupancy analysis approach on two different scales simultaneous-

ly - at the macro-habitat level (similar to the Wibisono et al. [34]

approach) and at the micro-habitat scale for habitat use within a

tiger’s home range. While Wibisono et al. provide information on

occupancy with partial contribution of data from this study, the

results cannot be compared directly with this study due to the

differences in some critical aspects (such as landcover types

surveyed, geographic coverage, and covariates used in the models

that are different and specific to this study).

Table 6. Estimates of b for the logit link function based on best and univariate models for tiger probability of habitat use (y1-km) in
all landcover types in central Sumatra for manual covariates.

MODEL
Inter-
cept

Under-
story

LC-
Code

Fire-
risk

Settle-
ment Slope

Alti-
tude Encroach

Log-
ging

Hun-
ting

Sub-
canopy

Cano-
py

Over-
all

A priori
relationship

+ 2 2 22 2 2 2 2 2 + + +

Best
(SE)

215.50
(3.07)

0.67
(0.14)*

21.28
(0.29)*

20.52
(0.32)

251.89
(12.81)*

20.04
(0.15)

0.32
(0.13)*

NA NA NA NA NA NA

Univariate
(SE)

NA 0.62
(0.12)*

21.76
(0.30)*

20.73
(0.31)*

255.20
(2.12)*

0.33
(0.11)*

4.46
(0.79)*

20.29
(0.17)

20.20
(0.13)

20.18
(0.16)

0.08
(0.13)

0.07
(0.13)

20.06
(0.11)

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italics indicate opposite from a priori prediction.
Overall = overall vegetation cover.
doi:10.1371/journal.pone.0030859.t006

Figure 3. Estimated probability of habitat use (y1-km) by tigers
in six land cover types. These estimates were produced from the
best model for each landcover (bars) and ratio of plantation’s
probability of use (diamonds) relative to forest based on a) landscape
covariates and b) manual covariates.
doi:10.1371/journal.pone.0030859.g003
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Tiger occupancy and habitat use in central Sumatra
Scale independent factors. Understory cover was

consistently found to have positive impacts on tiger probability

of occupancy and habitat use across the landscape and within

different types of landcover. This suggests that availability of

adequate vegetation cover at the ground level served as an

environmental condition fundamentally needed by tigers

regardless of the location. Without adequate understory cover,

tigers, as an ambush hunter [1], would find it hard to capture their

prey, even if prey animals are abundant. Furthermore, without

adequate understory cover, tigers are even more vulnerable to

humans who generally perceive them as dangerous and readily

persecute them. Although this likely applies to all tigers, it is

particularly relevant to Sumatran tigers. Perhaps human

persecution of tigers [35,36] has become an important selection

factor contributing to the overall secretive behavior of tigers in the

region, causing this obligatory requirement for ample understory

cover.

Variables that represent distance or dissimilarity from forest

such as landcover rank and distance to centroid of forest block

greater than 50,000 ha, also consistently negatively and strongly

impacted tiger occupancy and/or habitat use. These results

Table 7. Top models (wi.0) for probability of habitat use (y1-km) by tigers based on detection history data collected at transect
sites within forest areas only (n = 1029) in central Sumatra.

Model AIC DAIC wi

Model
Likelihood K.

a) Developed using landscape covariates

psi(dtwater),thta0,thta1,p(.) 1205.18 0.00 0.391 1.000 5

psi(dtwater+Precip),thta0,thta1,p(.) 1205.82 0.64 0.282 0.726 6

psi(Precip),thta0,thta1,p(.) 1208.98 3.80 0.058 0.150 5

psi,thta0,thta1,p(.) 1209.01 3.83 0.058 0.147 4

psi(dtf05cr),thta0,thta1,p(.) 1209.35 4.17 0.049 0.124 5

psi(Dtfedge07),thta0,thta1,p(.) 1209.71 4.53 0.041 0.104 5

psi(altDEM),thta0,thta1,p(.) 1209.82 4.64 0.038 0.098 5

psi(dtwater+dtf05cr),thta0,thta1,p(.) 1210.31 5.13 0.030 0.077 5

psi(Dtmprd),thta0,thta1,p(.) 1210.87 5.69 0.023 0.058 5

psi(dtpacr),thta0,thta1,p(.) 1210.98 5.80 0.022 0.055 5

1 group, Constant P 1212.94 7.76 0.008 0.021 2

b) Developed using manual covariates

psi(understory+encroach+Settlement+Slope), thta0,thta1,p(.) 1172.06 0.00 0.384 1.000 8

psi(understory+encroach+Settlement+Slope+firerisk+Altitude),thta0,thta1,p(.) 1172.62 0.56 0.290 0.756 10

psi(understory+encroach+Settlement+Slope+firerisk),thta0,thta1,p(.) 1174.05 1.99 0.140 0.370 9

psi(understory+encroach+Settlement+Slope+firerisk+Altitude+Hunting),thta0,thta1,p(.) 1174.58 2.52 0.110 0.280 11

psi(understory+encroach+Settlement),thta0, thta1,p(.) 1176.25 4.19 0.050 0.120 7

psi(understory+encroach),thta0,thta1,p(.) 1177.34 5.28 0.030 0.070 6

psi(understory),thta0,thta1,p(.) 1190.35 18.29 0.000 0.000 5

Notes: Psi = probability of site occupancy/habitat use; p = probability of detection; thta0 = spatial dependence parameter representing the probability that the species is
present locally, given the species was not present in the previous site; thta1 = spatial dependence parameter representing the probability that a species is present
locally, given it was present at the previous site. Dtwater = distance to freshwater; Precip = precipitation; dtf05cr = Distance to nearest centroid of forest block greater
than 50,000 ha; dtfedge07 = distance to forest edge; altDEM = altitude; Dtmprd = distance to major public road; dtpacr = distance to centroid of protected areas.
doi:10.1371/journal.pone.0030859.t007

Table 8. Estimates of b for the logit link function based on best and univariate models for tiger probability of habitat use (y1-km)
within forest areas in central Sumatra for landscape covariates.

MODEL Intercept AltDEM Precip Dtwater Dtfedge07 Dtpacr Dtmprd dtf05cr

A priori relationship NA 2 + 2 + 2 2 2

Best
(SE)

21.808 (0.195) NA NA 0.289 (0.120)* NA NA NA NA

Univariate
(SE)

NA 0.130
(0.117)

20.178
(0.125)

0.289
(0.120)*

0.135
(0.117)

0.021
(0.124)

20.048
(0.130)

20.1670
(0.132)

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italic indicates opposite from a priori prediction.
AltDEM = altitude; Precip = precipitation; Dtwater = distance to freshwater; dtfedge07 = distance to forest edge; dtpacr = distance to centroid of protected areas;
Dtmprd = distance to major public road;dtf05cr = Distance to nearest centroid of forest block greater than 50,000 ha.
doi:10.1371/journal.pone.0030859.t008
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indicate that although tigers were capable of using some plantation

areas, especially acacia, forest remained their core habitat without

which they are unlikely to survive in Sumatra.

In other parts of Sumatra such as Aceh [37], tigers and several

other animal species were found to be very sensitive to human

activities. We found that human-disturbance-related variables

negatively affected tiger occupancy and habitat use. However, the

effects of these variables were not always strong. Those variables

with strong impacts include a) ‘settlement’ in the best and univariate

habitat use models, both within forest areas and across six landcover

types; b) ‘encroachment’ in the best and univariate models for tiger

habitat use within forest areas; c) ‘logging’ in best and univariate

models for habitat use within acacia plantations; and d) ‘husbandry’

(the intensity of maintenance for plantation to be productive) in

univariate model for habitat use within acacia plantations.

Human disturbance can take different forms in different

landcover types. In forest areas, sites with a large encroachment

score had higher levels of human activity, which was not always

the case in plantations. In acacia plantations, areas with higher

encroachment scores were typically those that had lower levels of

plantation care management activities and could actually have

lower levels of human activity. This typically happened in areas

considered by plantation managers to be less productive such as

areas with unresolved land status. Highly encroached acacia

plantations, therefore, did not necessarily have higher levels of

human activity.

Scale dependent factors. The impact of altitude on tiger

occupancy or habitat use depended on the scale and context of

analysis. We found that, overall, probability of tiger occupancy

increased with altitude, but, within forest areas, the impacts were

not as strong for both landscape variables and manual variables.

Meanwhile, in another island-wide analysis [34], tiger occupancy

(within forest) is higher at lower altitude. In acacia plantations, the

model failed to converge when we used altitude as a landscape

Table 9. Estimates of b for the logit link function based on best and univariate models for tiger probability of habitat use (y1-km)
within forest areas in central Sumatra for manual covariates.

MODEL
Inter-
cept Overall

Subca-
nopy

Under-
story Logging Encroach Fire-risk

Settle-
ment Hunting Altitude Slope

A priori relationship NA + + + 2 2 2 2 2 2 2

Best
(SE)

218.047
(1.954)

NA NA 0.652
(0.140)*

NA 20.769
(0.350)*

NA 288.89
(10.850)*

NA NA 0.33 (0.15)*

Univariate
(SE)

NA 20.173
(0.125)

20.002
(0.127)

0.582
(0.135)*

20.159
(0.1459)

20.742
(0.330)*

20.623
(0.352)

2160.134
(7.278)*

20.198
(0.132)

0.205
(0.118)

0.359
(0.127)*

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italic indicates opposite from a priori prediction.
doi:10.1371/journal.pone.0030859.t009

Table 10. Top models (wi.0) for probability of habitat use (y1-km) by tigers based on detection history data collected at transect
sites within acacia plantations (n = 268, at 1-km transect scale) in central Sumatra.

Model AIC DAIC wi

Model
Likelihood K

a) Developed using landscape covariates

psi(dtwater+Dtmprd),thta0,thta1,p(.) 198.15 0.00 0.395 1.000 6

psi(dtwater+Dtmprd+Dtfedge07),thta0,thta1,p(.) 198.68 0.53 0.303 0.767 7

psi(dtwater),thta0,thta1,p(.) 199.15 1.00 0.240 0.607 5

psi,thta0,thta1,p(.) 205.07 6.92 0.012 0.031 4

psi(Dtmprd),thta0,thta1,p(.) 205.24 7.09 0.011 0.029 5

b) Developed using manual covariates

psi(Slope+subcanopy+encroach+logging), thta0,thta1,p(.) 182.66 0.00 0.543 1.000 8

psi(Slope+subcanopy+encroach+logging+firerisk),thta0,thta1,p(.) 183.49 0.83 0.359 0.660 9

psi(Slope+subcanopy+encroach),thta0,thta1,p(.) 186.29 3.63 0.090 0.163 7

c) Developed using manual plantation-specific covariates

psi(Age+HumanActivities+LeafLitter), thta0,thta1,p(.) 174.91 0.00 0.358 1.000 7

psi(Age+HumanActivities+LeafLitter+TreeHeight),thta0,thta1,p(.) 175.42 0.51 0.278 0.775 8

psi(Age+HumanActivities),thta0,thta1,p(.) 176 1.09 0.208 0.580 6

psi(Age+HumanActivities+LeafLitter+TreeHeight+OtherPlants),thta0,thta1,p(.) 176.73 1.82 0.144 0.403 9

psi(Age+LeafLitter),thta0,thta1,p(.) 182.77 7.86 0.007 0.020 6

Notes: Psi = probability of site occupancy/habitat use; p = probability of detection; thta0 = spatial dependence parameter representing the probability that the species is
present locally, given the species was not present in the previous site; thta1 = spatial dependence parameter representing the probability that a species is present
locally, given it was present at the previous site. Dtwater = distance to freshwater; Dtmprd = distance to major public road; dtfedge07 = distance to forest edge;
dtpacr = distance to centroid of protected areas; dtf05cr = Distance to nearest centroid of forest block greater than 50,000 ha; Precip = precipitation.
doi:10.1371/journal.pone.0030859.t010
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variable, and had a small estimated impact when we used altitude

data from manual variables.

We suspect that altitude, which is strongly correlated with slope,

was negatively correlated with overall human activity. In our study

area, human activities affecting tiger habitats (such as conversion

of forests into plantations), generally occur in flat lowland areas,

followed by either swampy/peatland areas or hilly areas. The later

are generally considered less suitable for plantations especially

oilpalm. Most of the remaining forests, particularly those growing

on mineral soils, are at higher altitudes. Because of the high

demand for flat land at low elevation, forests in such areas were

degraded at a much faster rate and therefore predicted to go

extinct sooner than forest at higher altitudes [38].

The importance of altitude/slope on tiger occupancy is also

driven by the fact that peat swamps dominated the low-lying forest

types in the landscape. Such forest types are lower in quality

compared to mineral soils forests and have low levels of primary

productivity [39]. They do not support high ungulate community

biomass likely because ungulates with pointed feet face difficulties

travelling in such terrains with soft ground and porous texture.

Previous work [32] documented an extremely low abundance of

potential prey in peat land areas. Finally, post-hoc models

including slope for tiger detection probability, instead of

occupancy, were superior based on AIC rankings. This suggested

that within forest areas tigers are more easily detected in steep-

terrain. Therefore it is important to determine if tigers preferred

such areas, or rather that detection was easier due to funneling

animals along the strip of a narrow of ridge or valley.

Distance-to-freshwater had strong yet inconsistent impacts on

tiger probability-of-use in different landcover types. For forest

area, it is likely that water acts as a proxy for human activities as

people tend to concentrate around water bodies. For other

landcover types such as acacia where areas surrounding water

bodies or riparian areas are (supposed to be) protected, the

relationship between water bodies and human activities might

be the opposite or not as strong. Water availability is not likely a

critical issue for tigers in the landscape. This region already has

relatively high annual rainfall (more than 2210 mm/year from

2004 to 2006). Additionally most sites within the study area had

a dense network of streams in the upper lands, or wider rivers

and other water bodies such as lakes or swamps in the low

lands.

Non-influential factors. Variables that were never identified

as important at any scale include ‘‘canopy’’, ‘‘sub-canopy’’, and

‘‘overall’’ vegetation cover in all landcover types, and ‘‘rotation’’

and ‘‘plant interval’’ in plantation areas. The fact that ‘‘rotation’’

and ‘‘plant interval’’ did not impact tiger use in this study was most

likely due to low variation in these variables. Except for

understory, no vegetation-related characteristics were important

determinants of tiger use. This result suggests that, with other

factors (particularly human disturbance) being equal, tigers not

only used but seemed to prefer forests that were selectively logged

or slightly disturbed, as they tended to have thicker understory

cover compared to mature primary forest. Therefore, restoration

of previously disturbed or logged forests should not focus on

achieving ‘climax’ primary forest condition. Instead, reducing the

Table 11. Estimates of b for the logit link function based on best and univariate models for tiger probability of habitat use (y1-km)
within acacia plantations in central Sumatra for landscape covariates.

MODEL Intercept AltDEM Precip Dtwater Dtfedge07 Dtpacr Dtmprd dtf05cr

A priori relationship NA 2 + 2 2 2 + 2

Best
(SE)

23.242 (0.885) NA NA 21.160 (0.442)* NA NA 20.773 (0.440) NA

Univariate
(SE)

NA NA 0.347
(0.378)

22.715
(2.145)

20.522
(0.456)

20.455
(0.405)

20.552
(0.462)

20.410
(0.365)

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italics indicate opposite from a priori prediction.
AltDEM = altitude; Precip = precipitation;Dtwater = distance to freshwater body; dtfedge07 = distance to forest edge; dtpacr = distance to centroid of protected areas;
Dtmprd = distance to major public road; dtf05cr = Distance to nearest centroid of forest block greater than 50,000 ha.
doi:10.1371/journal.pone.0030859.t011

Table 12. Estimates of b for the logit link function based on best and univariate models for tiger probability of habitat use (y1-km)
within acacia plantations in central Sumatra for manual covariates.

Model Intercept Overall Canopy
Sub-
canopy

Under-
story Logging

En-
croach

Fire-
risk

Settle-
ment

Hun-
ting Altitude Slope

A priori relationship + + + + 2 2 2 2 2 2 2

Best 259.47 NA NA 1.53 NA 2128.65 2.32 NA NA NA NA 22.36

(SE) (1.986) (1.397) (0.853)* (1.43) (1.73)

Univariate NA 0.46 0.46 7.33 0.15 2153.81 3.25 21.14 232.94 0.43 0.16 24.97

(SE) (0.559) (0.559) (12.59) (0.342) (1.255)* (5.062) (0.89) (0.415) (0.391) (0.351) (4.994)

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italics indicate opposite from a priori prediction.
doi:10.1371/journal.pone.0030859.t012
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level of human disturbance and maintaining adequate understory

cover would likely be more beneficial for tigers.

Landscape-scale assessment: occupancy models and
spatially-explicit predictions

At the landscape-scale, closely-competing models included

proportion of forest within grid cells and distance-to-centroid-of-

protected-area, in addition to altitude. Distance-to-road, which

was identified as the most important factor representing human

disturbance in a previous study in the neighboring landscape of

Kerinci-Seblat [23], was not an important factor in this study.

However, landscape characteristics such as variation in forest type,

extent and relative position of landscape features (especially public

roads relative to forest blocks) appear to be very different between

the Kerinci-Seblat and our study area.

Importantly, based on the spatially-explicit model, many areas

with high probability of tiger occupancy were located outside of

existing protected areas. Areas with high estimated probability of

occupancy and with high precision (low coefficient of variation)

were concentrated in the southwestern part of the landscape. Our

landscape model predicted higher elevation areas to have a higher

probability of tiger occupancy, even after excluding those areas

with values well beyond the range of surveyed altitude values. Our

model predicted relatively large areas with very high probability of

tiger occupancy, particularly to the northwest of Rimbang Baling

Reserve. In contrast, although with lower precision, current

protected areas in peat land (i.e., Kerumutan Wildlife Reserve/

KWR) had little area with a high probability of tiger occupancy.

Interestingly, areas with the highest probability of occupancy in

peat land are currently not protected. These include areas east of

KWR, on the Kampar Peninsula, and on the western part of Bukit

Tigapuluh. In fact, large portions of these areas were proposed for,

or are already in the process of, conversion by either pulp-and-

paper- or palm-oil-producing companies [40,41].

More intensive surveys are required to obtain better precision in

occupancy estimates in peat land areas. Low occupancy with large

coefficient of variation could result from both ecological factors

(low abundance) and survey difficulties (logistical challenges and

low detectability). Further surveys and alternative methods that

can overcome the study challenges in such a poorly studied habitat

type should be explored. For example, it might be possible to

improve sign detection by using baited track stations [42] or

trained scat-detector dogs [43] to assist in sign detection of target

species.

The spatially-explicit model we developed could serve as the

basic framework for developing a tiger conservation vision at the

mega-landscape-scale. To maximize the likelihood of success in

tiger conservation, priorities should be directed toward securing

those areas with highest probability of occupancy through

protection and better management. Critical areas, for example

those crucial for connectivity between two closely-located habitat

blocks, could also be identified and managed to allow tiger

dispersal [32].

Between and within landcover type: habitat
characteristics, use and selection

In estimating tiger probability of use, different models

consistently ranked plantations in the following order from best

to worst: acacia, oilpalm, rubber, mixed-agriculture, and coconut.

Such a ranking system is useful for tiger conservation, but should

be considered within the context of the landscape studied rather

than generalized to other study areas. For example, while

vegetation characteristics did play a role in determining occupancy

and habitat use by tigers, so did other characteristics such as

plantation age, historical impacts, managerial aspects of planta-

tions, and extent and configuration of a particular type of

plantation in the landscape in relation to proximity to forest

blocks.

With context and scale recognized, rank can be used to

prioritize the types of plantations in the landscape that should be

managed to improve tiger conservation. For example, timber/

pulp-and-paper plantations such as acacia could be improved as

tiger habitat by regulating/reducing the level of human activities

and improving the vegetation that benefit tiger prey as well as

cover for tigers to hunt. Each type of plantation should be able to

facilitate the movement of tigers between patches of forest, and

prey animals were available in most areas, including plantations

where signs of wild boar were commonly found.

Certain individual animals - possibly sub-adult transients - did

venture through plantations relatively far (up to ,16 km) from

core forest habitat areas. Likely factors that motivated dispersal

include the ‘push’ from the territorial-holding adults and ‘pull’

from the availability of habitable spaces, prey, and possibly mates

in other places [44,45]. Such movements likely were facilitated by

the existence of riparian areas in the study area that served as

corridors, the availability of small patches of forests that served as

sort of ‘stepping stones’, and the mosaic of plantations with

adequate understory cover that provide habitat connectivity.

Implications
This study highlights the importance of scale and context in the

assessment of tiger habitat use. For example, altitude can have

different impacts depending on the analysis scale and the

importance of distance to freshwater depended on the landcover

Table 13. Estimates of b for the logit link function based on best and univariate models for tiger probability of habitat use (y1-km)
within acacia plantations in central Sumatra for plantation-specific manual covariates.

MODEL Intercept Age
Tree
Height

Hus-
bandry

Other
Plants

Leaf
Litter

Human
Activities

Plant
Intervals Rota-tion

A priori relationship NA + + 2 + + 2 + 2

Best 28.08 3.26 2.02 23.65

(SE) (2.98) (1.83) NA NA NA (1.35) (2.51) NA NA

Univariate
(SE)

NA 7.25
(4.864)

2.74
(1.284)*

20.97
(0.453)*

3.36
(1.725)

8.01
(5.767)

NA 20.15
(0.314)

0.001
(0.337)

Note:
*indicates strong or robust impact, that is 95% confidence intervals as defined by b̂b61.966SE not overlapping 0; italics indicate opposite from a priori prediction.
doi:10.1371/journal.pone.0030859.t013
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type. Tiger management therefore, should correspondingly

consider scale and context in restoration efforts. Once a broad-

scale vision, for example tiger conservation at the mega-landscape,

has been clearly defined, management goals can then be identified

for specific areas at finer-scales. Considering the dynamic nature of

the landscape, it is important to continuously evaluate the

landscape conditions, including land conversion and plantation

age and iteratively adjust conservation strategies and goals.

Although the overall value for tigers of any plantation was much

lower than forests, management practices can be adjusted so tigers

can still use them without necessarily causing negative economic

impacts. Management plans should include existing plantations,

particularly those that are forestry-based such as acacia which

possessed high potential to be reclaimed for additional tiger

habitat or as corridors, stepping stones, or mosaics of connectivity

facilitating animal movement [46]. In addition, plantation

concessions that border protected areas can potentially serve as

buffers to reduce human disturbance and provide additional forest

protection.

While prey animals appear to be available across plantation

areas, the most basic requirements generally lacking from

plantations were adequate understory cover and low levels of

human activity. If these two factors can be improved, especially

radiating out from the main forest habitat, tigers likely will use

these areas. Concurrently human-tiger conflict should be mini-

mized through awareness, training, and education programs

designed to build understanding and appreciation for wildlife

among local people. If such an initiative is replicated across the

landscape, tiger recovery is possible.

Methods

This study is part of a collaborative project among World

Wildlife Fund (WWF), Virginia Tech, and the Indonesian Ministry

of Forestry to conserve the Sumatran tiger. Field surveys were

conducted under the support from the Director of Biodiversity

Conservation, Indonesian Ministry of Forestry (Letter # S.784/

IV/KKH-I/2007).

We used occupancy modeling techniques [18,19,20,21] to

investigate the influence of biotic and abiotic factors on tigers’

large-scale selection of homerange (occupancy at 17617 km grid

cells) and fine-scale selection of habitat (habitat use in 1-km

transects) in forest and plantation areas. Partial data from this

study have been contributed to the island-wide tiger assessment

[34].

Sampling design
We superimposed the entire study area with a 17617 km grid

and selected 47 (,15% of the total area) grid cells in which to

conduct detection, non-detection surveys. The grid cell size was

selected because it approximated the home-range size of tigers in

low density areas [4,47]. We used the landcover classification

available from WWF-Indonesia [48] to stratify the sampling by

landcover type based on the proportion of availability across the

landscape.

We conducted detection, non-detection sampling at two spatial

scales simultaneously. At the landscape-level, each site was

represented by the 17617 km grid cell, while sampling occasions

within each site were represented by ,40, 1-km transects. At a

finer scale, we considered each 1-km transect as the site, and

sampling occasions were represented by ten 100-m segments. This

approach resembles ‘robust design’ in capture-mark-recapture

studies as described by Pollock et al. [49]. As such, it is possible to

estimate not only the tiger’s probability of occupancy at the

17617 km grid level, but also probability of habitat use at a finer

scale based on observations conducted at 1-km transect level [33].

To minimize observer bias and spatial autocorrelation in

selecting the survey area, we applied two levels of randomization.

First, we randomly selected a 262 km sub-cell within each

17617 km grid cell to conduct transects for each team. When

more than one team covered the same 17617 km grid cell, we

selected an independent random 262 km sub-cell for each team.

Second, we randomized the transect start-point by walking 200 m

following a random azimuth from the end point of the previous

transect or drop point from the last vehicle access. Field testing of

this approach indicated that, in most situations, observers lacked

the ability to predict what the conditions were like beyond 200-m

from the previous end point. We believe this technique minimized

observer bias in selecting areas to survey and minimized

autocorrelation between consecutive transects. Further attempts

to mitigate the impacts of spatial autocorrelation were done at the

analysis stage detailed below.

Along transects the team surveyed areas deemed to have the

highest likelihood of finding tiger sign (tracks, scat, scrapes). The

team intensively searched for tiger and prey signs on forest trails,

sand beds, river banks, ridgelines, and other areas where tiger sign

were likely to be found. We did this, instead of following a straight

line as typically done in Distance Sampling [50], because of the

infeasibility and ineffectiveness of tiger sign sampling following

straight lines, proven through preliminary method-testing.

Animal sign and environmental/habitat conditions
Each 1 km transect was divided into ten, 100-m segments where

sign surveys and environmental variables were noted and

measured in every segment. At the level of 17617 km grid cell

we used Geographic Information System (GIS) software ArcGIS

version 9.3.1, to extract grid-level landscape variables described

below. For every 1-km transect, the team recorded the weather

and GPS coordinates for the start and end of each transect. At

every 100-meter segment we measured altitude using the

barometric altimeter available in GarminH GPS units, and we

tallied the scores for overall vegetation cover, canopy cover, sub-

canopy cover, understory cover, and slope (Appendix S1). We also

observed, assessed, and scored the impact and/or risk of logging,

encroachment, fire, settlement, and hunting on a 1–5 scale.

Due to the uniqueness of plantation characteristics, we assessed

additional variables for plantations collected at every 100-m

segment that included estimates of tree age, tree diameter and

height, intensity of plant husbandry, the presence or cover of

plants other than the main commodity species, leaf-litter cover,

level of human activity, interval/distance between individual

plants, and planting rotation (Appendix S2). We summarized the

values from observations of every habitat variable conducted at

100-m segments and treated them as site covariates associated with

each 1-km transect.

A guideline developed based on field-testing was used to assist

observers in assigning habitat scores. When ambiguities in

assigning scores were found between observers, we averaged the

values from all observers. We believe the variable scores we

documented effectively depicted habitat conditions while being

relatively practical to collect and can be used for rapid assessment

with relatively low levels of training.

At each detection we recorded species, sign type (e.g., direct

sighting, track, scat/dung), distances from the start point of

transect, and perpendicular distance from the center of the

transect line. Detections of multiple signs from the same species in

the same segment were noted as only a single detection. For this

paper, we focus on tigers and reduced all such information into
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whether or not the animal was detected in a given segment (for

analysis at finer-scale) or transect (for analysis at landscape-scale).

Environmental variables at the landscape level were extracted

from GIS layers available from World Wildlife Fund (WWF)

Indonesia GIS Unit. These include landcover [48]; roads (updated

from original data from Indonesian national survey and mapping

coordinating agency - BAKOSURTANAL); and boundaries of

conservation areas, boundaries of forestry concessions, and

boundaries of agricultural concessions. We also obtained several

GIS layers available in the public domain such as Bioclim

interpolated precipitation version 1.4 [51], freshwater (rivers,

canals, and lakes data) from Digital Chart of the World

downloaded through http://www.diva-gis.org/gData, and Digital

Elevation Model/DEM from Shuttle Radar Topographic Mis-

sion/SRTM version 4 available from International Center for

Tropical Agriculture/CIAT [52]. A complete list of landscape

variables derived from GIS, the original source, and treatments to

the data are presented in Appendix S3.

Analyses
We used Program PRESENCE version 2.4 [53] to estimate the

probability of occupancy (y17617 km) across the 17617 grid cells

and to assess habitat use by tigers within each landcover type

where adequate tiger detection data were collected, based on the

probability of use (y1-km) at the finer spatial scale. PRESENCE

uses the models developed by MacKenzie et al. [18,19] and others

such as Hines et al. [33] for the spatial autocorrelation model, to

estimate the probability-of-occupancy or probability-of-use from

detection-non-detection data collected in a series of patches, sites,

and/or grid cells.

We modeled the effects of different covariates (i.e., landscape,

habitat, and environmental variables) on tigers’ probability of

occupancy (y17617 km) or habitat use (y1-km). At the landscape

level, we treated each 17617 km cell as the ‘site’, while each 1-km

transect represented a sampling occasion or replicate. As the

17617 km grid size was considered close to the animal’s home-

range size, the landscape-scale analyses were therefore expected to

reveal the ‘true occupancy’ for tigers. To investigate the tiger’s

habitat-use within certain landcover types, we considered each1-

km transect as the ‘site’ while the 100-meter segments represented

‘replicates.’

We explored the correlations between environmental/habitat

variables and eliminated highly correlated variables to reduce the

number of covariates used in occupancy analyses. We considered

variables highly correlated when correlation coefficients were

higher than 0.6 [54,55]. For highly correlated variables, we

selected the one considered most representative based on its

ecological relevance, availability across wider area, ease of

collection, or a combination of these.

Developing a spatially-explicit landscape-scale tiger

occupancy model. Preliminary analysis revealed that

collapsing the detection/non-detection history data from 40 to

10 occasions reduced the number of zeros in the data and

stabilized the numerical algorithms used in Program Presence.

Therefore, each occasion represents 4 consecutive 1-km transects

within each 17617 km site.

Due to the relatively low number of samples at the landscape-

level (i.e., 47, 17617 km sites), it was not feasible to include all

available GIS covariates in the occupancy model [54,56]. Hence,

considering the correlations between variables (Appendices S4, S5,

S6, S7) and using a priori knowledge related to tiger ecology, we

ensured that the number of covariates used in the models was no

more than 20% of the number of sites.

Following the above procedure, we retained 7 GIS-based

landscape-scale continuous variables (hereafter ‘grid-level land-

scape variables’) used to model the probability of occupancy

(y17617 km). The variables were: 1) forest area within each grid cell

based on the condition in 2007 (‘‘For07Area’’), 2) rate of

deforestation from 2006 to 2007 for each 17617 km grid cell

(‘‘Def0607’’), 3) altitude based on Digital Elevation Model/DEM

(‘‘AltDEM’’), 4) distance to forest centroids (defined as the centroid

of contiguous forest area equal to or greater than 50,000 ha based

on conditions in 2005; ‘‘DtF05Cr’’), 5) distance to the centroid of

protected area (‘‘Dtpacr’’), 6) distance to major public road

(‘‘Dtmprd’’), and 7) interpolated precipitation averaged for each

grid cell (‘‘Precip’’). In addition, we also used the incremental

scoring (1 to 6) of landcover type according to its dissimilarity from

forest (‘‘LCCode’’) or forest/non forest category (‘‘LCFor’’) to

model the detection probability of the animal. Records for the

seven continuous variables are available for all the grid cells across

the landscape; while the categorical landcover type or forest/non-

forest variable is available for only the surveyed grid cells. Values

for each variable were normalized and/or scaled by computing z-

values ( x{�xx½ �=sd ) as a means of covariate transformation, while

scaling was done by dividing the covariate value by a constant (Jim

Hines/USGS, pers. comm.).

In building each model set for occupancy (y17617 km), first we

entered each variable in a univariate model as a function of the

above listed seven variables. For each case, we modeled the

detection probability (p) as either constant (.) or influenced by two-

category landcover type (LCFor) coded as forest (1) or non-forest

(0). Based on the performance of the univariate models we

constructed multivariate models using combinations of covariates

and included at least one of those covariates that performed

relatively well in univariate models, similar to the approach

suggested by Thomas et al. [57]. Models were ranked and

evaluated based on Akaike Information Criteria (AIC) [58]. We

considered models to be competing if they were within 2 delta-

AICs of the top model and models with some support if they were

between 2–4 delta AICs. To evaluate and mitigate the impact of

spatial autocorrelation in the detection history data on the

parameter estimates, we also ran custom models incorporating

spatial autocorrelation [33].

We selected the best model based on AIC and used the

estimates of probability of occupancy for each grid cell to

construct a spatially-explicit tiger distribution model across the

landscape, including the un-surveyed areas. We evaluated the

uncertainty in the estimates based on the coefficient of variation

(standard errors divided by the occupancy estimate) for each cell.

In the resulting map depicting probability of tiger occupancy

across the landscape, we highlighted un-surveyed cells that have

covariate values far beyond the range of the surveyed cells. For

example, although actual surveys were conducted in elevations

ranging from 0 to 1,250 m (measured directly in the transect),

the highest average elevation of a surveyed cell was below 500 m

above sea level (based on DEM calculated in GIS); hence we had

little confidence in the prediction of tiger occupancy for grid cells

that had average elevations far beyond that range and we

highlighted cells where average elevation was higher than

750 m.

Assessing tiger use- and selection-of-habitats within

forest and plantation areas. Estimates of the occupancy or

probability of use at the patch, or within-habitat, scale are similar

to the resource selection function (RSF) or, depending on the

sampling design, resource selection probability function (RSPF)

[59,60]. But, traditional methods of estimating the RSPF are based

on presence-absence data assuming that a non-detection is an
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absence. Therefore, occupancy techniques can produce more

accurate estimates of the probability of habitat use by

incorporating detectability.

Our fine scale sample units were represented by 100 m

segments of the 1-km transects, augmenting the number of

samples by an order of magnitude, allowing us to investigate the

tiger’s use- or selection-of-habitat within selected landcover types

containing adequate records of tiger detections. We developed

habitat use (y1-km) models using different sets of covariates

including a) variables extracted in GIS from 500-m radii of the

start- and end-point of each 1-km transect (values from both circles

were averaged), hereafter ‘landscape covariate’ b) variables scored

directly in the field and tallied in each transect in all landcover

types, hereafter ‘manual covariates’ and c) specific variables

observed and tallied only in plantation areas, hereafter ‘manual

plantation-specific covariates.’ We also combined sets of covariates

to model tiger habitat use (y1-km) either for 1) all landcover types,

2) forest only, or 3) specific plantations where adequate tiger

detections were obtained (i.e., acacia).

Within each landcover-type, habitat use models were developed

for natural forest and acacia plantations only. We could not

develop models for other landcover types due to the small number

of tiger detections. For those, we focused on qualitative rather than

quantitative analysis.

We developed habitat use models by incorporating the effect of

different covariates with similar procedures used to develop the

landscape level occupancy models. We extracted the estimates of

the probability-of-habitat-use (y1-km) from the best models to

calculate the likelihood ratios of habitat use between landcover

types. Meanwhile, we also used the untransformed estimates of

coefficients for covariates (b) to evaluate the effect of different

variables on the probability of habitat use (y1-km) by tigers. We

considered a covariate to have a strong or robust impact on y if its

respective estimate of b has 95% confidence limits (calculated as

b̂b61.966SE) that did not include zero [61].
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